A Coupled Helmholtz Machine for PCA

نویسنده

  • Seungjin Choi
چکیده

In this letter we present a coupled Helmholtz machine for principal component analysis (PCA), where sub-machines are related through sharing some latent variables and associated weights. Then, we present a wake-sleep PCA algorithm for training the coupled Helmholtz machine, showing that the algorithm iteratively determines principal eigenvectors of a data covariance matrix without any rotational ambiguity, in contrast to some existing methods that performs factor analysis or principal subspace analysis. The coupled Helmholtz machine provides a unified view of principal component analysis, including various existing algorithms as its special cases. The validity of the wake-sleep PCA algorithm is confirmed by numerical experiments. Indexing terms: Dimensionality reduction, Helmholtz machines, PCA. to appear in Electronics Letters Please address correspondence to Prof. Seungjin Choi, Department of Computer Science, POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang 790-784, Korea, Tel: +82-54-279-2259, Fax: +82-54-279-2299, Email: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression

A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...

متن کامل

Linear and Nonlinear Multivariate Classification of Iranian Bottled Mineral Waters According to Their Elemental Content Determined by ICP-OES

The combinations of inductively coupled plasma-optical emission spectrometry (ICP-OES) and three classification algorithms, i.e., partial least squares discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of Iranian bottled mineral waters, were explored. ICP-OES was used for th...

متن کامل

A Review of Surface-Enhanced Raman Spectroscopy on Potential Clinical Applications Towards Diagnosing Colorectal Cancer

Colorectal cancer (CRC) is one of the leading cancers in the world and early-screening is still the best method of cancer patient survival. However, colonoscopy as the current gold standard is not without flaws and an emerging technique called surface-enhanced Raman spectroscopy (SERS) coupled with machine learning is a possible candidate that could be applied in parallel with colonoscopy. This...

متن کامل

A Review of Surface-Enhanced Raman Spectroscopy on Potential Clinical Applications Towards Diagnosing Colorectal Cancer

Colorectal cancer (CRC) is one of the leading cancers in the world and early-screening is still the best method of cancer patient survival. However, colonoscopy as the current gold standard is not without flaws and an emerging technique called surface-enhanced Raman spectroscopy (SERS) coupled with machine learning is a possible candidate that could be applied in parallel with colonoscopy. This...

متن کامل

Sound Wave Propagation in Viscous Liquid-Filled Non-Rigid Carbon Nanotube with Finite Length

   In this paper, numerical results obtained and explained from an exact formula in relation to sound pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this work, the obtained formula has been compared to what has been used by other research...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006